login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124750
Expansion of (1 + x + x^2)/(1 - x^3 + x^4).
1
1, 1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 1, 0, -1, 2, -1, -1, 3, -3, 0, 4, -6, 3, 4, -10, 9, 1, -14, 19, -8, -15, 33, -27, -7, 48, -60, 20, 55, -108, 80, 35, -163, 188, -45, -198, 351, -233, -153, 549, -584, 80, 702, -1133, 664, 622, -1835, 1797, -42, -2457, 3632, -1839
OFFSET
0,15
COMMENTS
Row sums of number triangle A124749.
Let A(n) denote the n X n matrix with 1's along and everywhere above the main diagonal, 1's along the sub-sub-subdiagonal, and 0's everywhere else; for n>3, a(n) equals (-1)^(n+1) times the sum of the coefficients of the characteristic polynomial of A(n-3) (see Mathematica code below). - John M. Campbell, Mar 10 2012
FORMULA
G.f.: (1 + x + x^2)/(1 - x^3 + x^4).
a(n) = Sum_{k=0..n} binomial(floor(k/3), n-k) * (-1)^(n-k).
a(n) = a(n-3) - a(n-4). - Wesley Ivan Hurt, May 02 2021
MATHEMATICA
A[n_] := Array[Sum[KroneckerDelta[#1, #2 - j], {j, 0, n}] + KroneckerDelta[#1, #2 + 3] &, {n, n}]; Table[(-1)^(r + 1)*Total[CoefficientList[CharacteristicPolynomial[A[r - 3], x], x]], {r, 4, 60}] (* John M. Campbell, Mar 10 2012 *)
CoefficientList[Series[(1+x+x^2)/(1-x^3+x^4), {x, 0, 70}], x] (* or *) LinearRecurrence[{0, 0, 1, -1}, {1, 1, 1, 1}, 70] (* Harvey P. Dale, Jun 06 2018 *)
CROSSREFS
Cf. A124749.
Sequence in context: A217765 A237928 A108482 * A275865 A136458 A048805
KEYWORD
easy,sign
AUTHOR
Paul Barry, Nov 06 2006
STATUS
approved