login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108482
Expansion of a modular function for Gamma(7).
1
1, 1, 1, 0, -1, -1, 0, 1, 2, 1, -1, -3, -3, 0, 3, 5, 3, -2, -6, -6, -1, 6, 9, 5, -4, -12, -11, -1, 12, 18, 10, -7, -21, -21, -3, 20, 30, 17, -13, -37, -35, -4, 36, 53, 30, -20, -62, -59, -8, 57, 85, 47, -35, -101, -95, -11, 94, 138, 78, -54, -159, -150, -19, 145, 213, 118, -85, -247, -231, -27, 225, 330, 183, -128, -375
OFFSET
0,9
REFERENCES
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162. See page 157.
FORMULA
Given g.f. A(x), then B(x)=x^-3*A(x^7) satisfies 0=f(B(x), B(x^2)) where f(u, v)=u^7 -v^7 +u*v^3 +u^9*v^6 +u^2*v^6 +3*u^5*v^8 -u^3*v^2 -u^3*v^9 -u^4*v^5 -u^5*v -5*u^6*v^4 -3*u^7*v^7 -2*u^8*v^3.
G.f.: Product_{k>0} (1-x^(7k-3))(1-x^(7k-4))/((1-x^(7k-1))(1-x^(7k-6))).
G.f.: B(x) / C(x), where B(x) is the g.f. of A375106 and C(x) is the g.f. of A375107. - Seiichi Manyama, Aug 03 2024
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^[0, -1, 0, 1, 1, 0, -1][k%7+1]), n))}
CROSSREFS
Sequence in context: A216232 A217765 A237928 * A124750 A275865 A136458
KEYWORD
sign
AUTHOR
Michael Somos, Jun 04 2005
STATUS
approved