OFFSET
0,9
REFERENCES
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162. See page 157.
FORMULA
Given g.f. A(x), then B(x)=x^-3*A(x^7) satisfies 0=f(B(x), B(x^2)) where f(u, v)=u^7 -v^7 +u*v^3 +u^9*v^6 +u^2*v^6 +3*u^5*v^8 -u^3*v^2 -u^3*v^9 -u^4*v^5 -u^5*v -5*u^6*v^4 -3*u^7*v^7 -2*u^8*v^3.
G.f.: Product_{k>0} (1-x^(7k-3))(1-x^(7k-4))/((1-x^(7k-1))(1-x^(7k-6))).
G.f.: B(x) / C(x), where B(x) is the g.f. of A375106 and C(x) is the g.f. of A375107. - Seiichi Manyama, Aug 03 2024
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^[0, -1, 0, 1, 1, 0, -1][k%7+1]), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 04 2005
STATUS
approved