login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108484
a(n) = Sum_{k=0..floor(n/2)} binomial(2n-2k,2k) * 3^(n-k).
3
1, 1, 4, 19, 55, 220, 793, 2845, 10480, 37963, 138259, 503608, 1831969, 6669865, 24276892, 88362451, 321640831, 1170726484, 4261339801, 15510894949, 56458080328, 205502135851, 748007984827, 2722677076336, 9910284168961
OFFSET
0,3
COMMENTS
In general, Sum_{k=0..floor(n/2)} C(2n-2k,2k)a^k*b^(n-k) has expansion (1-bx-abx^2)/(1-2bx-(2ab-b^2)x^2-2ab^2*x^3+(ab)^2*x^4).
FORMULA
G.f.: (1-x-3x^2)/(1-2x-5x^2-6x^3+9x^4).
a(n) = 2a(n-1)+5a(n-2)+6a(n-3)-9a(n-4).
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 04 2005
STATUS
approved