login
A108487
Sum binomial(2n-2k,2k)10^(n-k), k=0..floor(n/2).
1
1, 10, 110, 1600, 25100, 395000, 6201000, 97280000, 1526010000, 23938500000, 375525100000, 5890896000000, 92411011000000, 1449659710000000, 22740940010000000, 356739136000000000, 5596198360100000000
OFFSET
0,2
COMMENTS
In general, sum{k=0..floor(n/2), C(2n-2k,2k)a^k*b^(n-k)} has expansion (1-bx-abx^2)/(1-2bx-(2ab-b^2)x^2-2ab^2*x^3+(ab)^2*x^4).
FORMULA
G.f.: (1-10x-10x^2)/(1-20x-80x^2-200x^3+100x^4); a(n)=20a(n-1)+80a(n-2)+200a(n-3)-100a(n-4).
MATHEMATICA
Table[Sum[Binomial[2n-2k, 2k]10^(n-k), {k, 0, Floor[n/2]}], {n, 0, 30}] (* or *) LinearRecurrence[{20, -80, 200, -100}, {1, 10, 110, 1600}, 30] (* Harvey P. Dale, Mar 20 2023 *)
CROSSREFS
Sequence in context: A276507 A049398 A055530 * A099883 A337351 A146753
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 04 2005
STATUS
approved