login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108489
Expansion of 1/sqrt(1-2x-5x^2-6x^3+9x^4).
2
1, 1, 4, 13, 37, 130, 427, 1441, 4954, 16987, 58843, 204610, 713893, 2500183, 8778478, 30898309, 108987427, 385136680, 1363252603, 4832572951, 17153677534, 60961916965, 216887253409, 772400234074, 2753261490919, 9822393082513
OFFSET
0,3
COMMENTS
In general, Sum_{k=0..n}, C(n-k,k)^2*a^k*b^(n-k) has expansion 1/sqrt(1-2bx-(2ab-b^2)x^2-2a*b^2*x^3+(ab)^2*x^4).
LINKS
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
FORMULA
a(n) = Sum_{k=0..n}, C(n-k, k)^2*3^k.
D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +5*(-n+1)*a(n-2) +3*(-2*n+3)*a(n-3) +9*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 20 2015
MATHEMATICA
Array[Sum[Binomial[# - k, k]^2*3^k, {k, 0, #}] &, 26, 0] (* Michael De Vlieger, Sep 10 2021 *)
CROSSREFS
Cf. A108484.
Sequence in context: A091874 A067633 A297391 * A155375 A155307 A155344
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 04 2005
STATUS
approved