login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108488 Expansion of 1/sqrt(1 -2*x -3*x^2 -4*x^3 +4*x^4). 1
1, 1, 3, 9, 23, 69, 203, 601, 1815, 5493, 16731, 51225, 157367, 485093, 1499499, 4646233, 14427095, 44880981, 139849979, 436419737, 1363713015, 4266417221, 13362194571, 41891406681, 131452430999, 412835452213, 1297543367835 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In general, Sum_{k=0..n} C(n-k,k)^2*a^k*b^(n-k) has the expansion 1/sqrt(1 -2*b*x -(2*a*b -b^2)*x^2 -2*a*b^2*x^3 +(a*b)^2*x^4).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k=0..n} C(n-k, k)^2*2^k.

a(n) ~ ((4*sqrt(2)-1)/62)^(1/4) * (1+2*sqrt(2)+sqrt(1+4*sqrt(2)))^(n+1) /(sqrt(Pi*n)*2^(n+2)). - Vaclav Kotesovec, Jul 24 2013

D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +3*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3) +4*(n-2)*a(n-4)=0. - R. J. Mathar, Aug 06 2013

G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * 2^k * x^k ). - Paul D. Hanna, Aug 31 2014

MATHEMATICA

Table[Sum[Binomial[n-k, k]^2*2^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 24 2013 *)

PROG

(PARI) {a(n)=polcoeff( exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k) * 2^k * x^k) *x^m/m) +x*O(x^n)), n)}

for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 31 2014

CROSSREFS

Cf. A051286, A108480.

Sequence in context: A146661 A004666 A196488 * A018334 A146392 A116659

Adjacent sequences: A108485 A108486 A108487 * A108489 A108490 A108491

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jun 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 06:18 EST 2022. Contains 358431 sequences. (Running on oeis4.)