login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055530
The recurrence b(k) = 10*b(k-1) + k^n with b(0)=0 has b(k)/10^k converging to a(n)/9^(n+1).
0
1, 10, 110, 1410, 22110, 428610, 10027710, 274463010, 8585407710, 302029998210, 11804909261310, 507547187120610, 23805911748929310, 1209638912316543810, 66192799008847310910, 3880867089138927234210, 242703222549879015746910
OFFSET
0,2
REFERENCES
Alex Walker, On the Growth of Sequences, 2007
FORMULA
a(n) = Sum_{x>=1} (9^(n+1))(x^n) / 10^x. - Alexander Walker, Feb 26 2007
MAPLE
a:=n->sum(9^(n+1)*x^n/10^x, x=1..infinity): seq(a(n), n=0..17); # Emeric Deutsch, Mar 23 2007
CROSSREFS
Sequence in context: A143749 A276507 A049398 * A108487 A099883 A337351
KEYWORD
frac,nonn
AUTHOR
Henry Bottomley, Jul 04 2000
EXTENSIONS
Corrected and extended by Emeric Deutsch, Mar 23 2007
STATUS
approved