login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143749
Series reversion of x * (1 - x) / (1 + 9*x).
4
0, 1, 10, 110, 1310, 16610, 221010, 3051510, 43357110, 630098810, 9324499610, 140046944510, 2129440330510, 32716182966610, 507115641523810, 7920881045935110, 124548017695545510, 1969917348711212010
OFFSET
0,3
COMMENTS
Hankel transform of a(n) is A143750. Hankel transform of a(n+1) is 10^C(n+1,2).
LINKS
FORMULA
G.f.: (1-9*x-sqrt(1-22*x+81*x^2))/2.
a(n) = Sum_{k=0..n-1} C(n+k-1,2*k)*A000108(k)*9^(n-k-1).
a(n+1) = Sum_{k=0..n} C(2*n-k,k)*A000108(n-k)*9^k.
a(n+1) = 0^n + (1/(n+0^n)) * Sum_{k=0..n} C(n,k)*C(n,k-1)*10^k.
a(n+1) = Sum_{k, 0<=k<=n} 10^k*A090181(n,k). - Philippe Deléham, Oct 14 2008
a(n) = 9 * a(n-1) + Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
Recurrence: n*a(n) = 11*(2*n-3)*a(n-1) - 81*(n-3)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(11*sqrt(10)-20)*(11+2*sqrt(10))^n/(18*sqrt(Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012
0 = a(n)*(6561*a(n+1) - 4455*a(n+2) + 324*a(n+3)) + a(n+1)*(891*a(n+1) + 322*a(n+2) - 55*a(n+3)) + a(n+2)*(11*a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 23 2014
G.f.: x/(1 - 9*x - x/(1 - 9*x - x/(1 - 9*x - x/(1 - 9*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 07 2018
EXAMPLE
G.f. = x + 10*x^2 + 110*x^3 + 1310*x^4 + 16610*x^5 + 221010*x^6 + 3051510*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1-9*x-Sqrt[1-22*x+81*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = 9 * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-9*x-Sqrt(81*x^2-22*x+1))/(2*x))); // G. C. Greubel, Sep 16 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 30 2008
STATUS
approved