login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143751
McKay-Thompson series of class 60D for the Monster group with a(0) = -1.
3
1, -1, -1, 1, 0, 0, 0, -1, 1, 1, -1, -1, 1, 0, -1, 2, 0, -2, 2, -1, 0, 2, -4, 0, 5, -1, -4, 2, 1, -2, 3, -3, -2, 7, -5, -2, 8, -6, -5, 8, 1, -5, 2, -2, -1, 12, -11, -10, 21, -6, -10, 13, -7, -4, 11, -7, -4, 14, -13, -10, 33, -14, -28, 32, -3, -12, 18, -24, 1, 36, -27, -22, 44, -13, -35, 50, -13, -36, 46, -26, -6, 56, -63, -22, 89, -30
OFFSET
-1,16
FORMULA
Expansion of eta(q) * eta(q^12) * eta(q^15) * eta(q^20) / (eta(q^3) * eta(q^4) * eta(q^5) * eta(q^60)) in powers of q.
Expansion of F(q) * F(q^2) in powers of q^3 where F(q) is the g.f. of A112215.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A143752.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u^2 + v^2) * (1 + u + v) * (u + v + u*v) - u*v * (1 + 2*u + 2*v + u*v)^2.
G.f.: (x * Product_{k>0} P(30, x^k) * P(60, x^k))^(-1) where P(n, x) is the n-th cyclotomic polynomial.
A058728(n) = a(n) unless n=0. Convolution inverse of A143752.
EXAMPLE
G.f. = 1/q - 1 - q + q^2 - q^6 + q^7 + q^8 - q^9 - q^10 + q^11 - q^13 + 2*q^14 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q]*QP[q^12]*QP[q^15]*(QP[q^20]/(QP[q^3]*QP[q^4]* QP[q^5]*QP[q^60])) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A) * eta(x^15 + A) * eta(x^20 + A) / (eta(x^3 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^60 + A)), n))};
(Magma) S<x> := PowerSeriesRing(RationalField()); Coefficients( DedekindEta(x)*DedekindEta(x^12)*DedekindEta(x^15)*DedekindEta(x^20)/( DedekindEta(x^3) *DedekindEta(x^4)*DedekindEta(x^5)*DedekindEta(x^60))); // G. C. Greubel, Mar 04 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 31 2008
STATUS
approved