login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090181
Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.
41
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
OFFSET
0,9
COMMENTS
Number of Dyck n-paths with exactly k peaks. - Peter Luschny, May 10 2014
FORMULA
Triangle T(n, k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. T(0, 0) = 1, T(n, 0) = 0 for n>0, T(n, k) = C(n-1, k-1)*C(n, k-1)/k for k>0.
Sum_{j>=0} T(n,j)*binomial(j,k) = A060693(n,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*10^k = A143749(n+1). - Philippe Deléham, Oct 14 2008
From Paul Barry, Nov 10 2008: (Start)
Coefficient array of the polynomials P(n,x) = x^n*2F1(-n,-n+1;2;1/x).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*C(2n-j,j)*C(j,k)*A000108(n-j). (End)
Sum_{k=0..n} T(n,k)*5^k*3^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-2)^k = A152681(n); Sum_{k=0..n} T(n,k)*(-1)^k = A105523(n). - Philippe Deléham, Feb 03 2009
Sum_{k=0..n} T(n,k)*2^(n+k) = A156017(n). - Philippe Deléham, Nov 27 2011
T(n, k) = C(n,n-k)*C(n-1,n-k)/(n-k+1). - Peter Luschny, May 10 2014
E.g.f.: 1+Integral((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x dx). - Peter Luschny, Oct 30 2014
G.f.: (1+x-x*y-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x). - Alois P. Heinz, Nov 28 2021, edited by Ron L.J. van den Burg, Dec 19 2021
T(n, k) = [x^k] (((2*n - 1)*(1 + x)*p(n-1, x) - (n - 2)*(x - 1)^2*p(n-2, x))/(n + 1)) with p(0, x) = 1 and p(1, x) = x. - Peter Luschny, Apr 26 2022
Recursion based on rows (see the Python program):
T(n, k) = (((B(k) + B(k-1))*(2*n - 1) - (A(k) - 2*A(k-1) + A(k-2))*(n-2))/(n+1)), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3. # Peter Luschny, May 02 2022
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 3, 1;
[4] 0, 1, 6, 6, 1;
[5] 0, 1, 10, 20, 10, 1;
[6] 0, 1, 15, 50, 50, 15, 1;
[7] 0, 1, 21, 105, 175, 105, 21, 1;
[8] 0, 1, 28, 196, 490, 490, 196, 28, 1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
MAPLE
A090181 := (n, k) -> binomial(n, n-k)*binomial(n-1, n-k)/(n-k+1):
seq(print( seq(A090181(n, k), k=0..n)), n=0..5); # Peter Luschny, May 10 2014
egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1, 2*sqrt(t)*x))/x, x);
s := n -> n!*coeff(series(egf, x, n+2), x, n);
seq(print(seq(coeff(s(n), t, j), j=0..n)), n=0..9); # Peter Luschny, Oct 30 2014
T := proc(n, k) option remember; if k = n or k = 1 then 1 elif k < 1 then 0 else (2*n/k - 1) * T(n-1, k-1) + T(n-1, k) fi end:
for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Dec 31 2024
MATHEMATICA
Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j, j] * Binomial[j, k] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 11}, {k, 0, n}]] (* Indranil Ghosh, Mar 05 2017 *)
p[0, _] := 1; p[1, x_] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
PROG
(Sage)
def A090181_row(n):
U = [0]*(n+1)
for d in DyckWords(n):
U[d.number_of_peaks()] +=1
return U
for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
(Python) from functools import cache
@cache
def Trow(n):
if n == 0: return [1]
if n == 1: return [0, 1]
if n == 2: return [0, 1, 1]
A = Trow(n - 2) + [0, 0]
B = Trow(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
return B
for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
(PARI)
c(n) = binomial(2*n, n)/ (n+1);
tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j, j) * binomial(j, k) * c(n-j)), ", "); ); print(); ); };
tabl(11); \\ Indranil Ghosh, Mar 05 2017
(Magma) [[(&+[(-1)^(j-k)*Binomial(2*n-j, j)*Binomial(j, k)*Binomial(2*n-2*j, n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
CROSSREFS
Mirror image of triangle A131198. A000108 (row sums, Catalan).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n) for x=0,1,2,3,4,5,6,7,8,9. - Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) = A090192(n+1), A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) = A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Oct 20 2007
Sequence in context: A348210 A122935 A131198 * A368504 A256551 A144417
KEYWORD
easy,nonn,tabl,changed
AUTHOR
Philippe Deléham, Jan 19 2004
STATUS
approved