login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368504
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * j^k.
1
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 11, 21, 10, 1, 0, 1, 20, 60, 58, 15, 1, 0, 1, 37, 161, 244, 141, 21, 1, 0, 1, 70, 428, 900, 857, 318, 28, 1, 0, 1, 135, 1149, 3164, 4225, 2787, 685, 36, 1, 0, 1, 264, 3132, 10990, 18945, 18196, 8704, 1434, 45, 1
OFFSET
0,9
FORMULA
G.f. of column k: x*A_k(x)/((1-k*x) * (1-x)^(k+1)), where A_n(x) are the Eulerian polynomials for k > 0.
T(0,k) = 0^k; T(n,k) = k*T(n-1,k) + n^k.
EXAMPLE
Square array begins:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 6, 11, 20, 37, 70, ...
1, 6, 21, 60, 161, 428, 1149, ...
1, 10, 58, 244, 900, 3164, 10990, ...
1, 15, 141, 857, 4225, 18945, 81565, ...
1, 21, 318, 2787, 18196, 102501, 536046, ...
PROG
(PARI) T(n, k) = sum(j=0, n, k^(n-j)*j^k);
CROSSREFS
Columns k=0..5 give A000012, A000217, A047520, A066999, A067534, A218376.
Main diagonal gives A368505.
Cf. A368486.
Sequence in context: A122935 A131198 A090181 * A256551 A144417 A085791
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Dec 27 2023
STATUS
approved