login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * j^k.
1

%I #20 Jan 06 2024 11:29:45

%S 1,0,1,0,1,1,0,1,3,1,0,1,6,6,1,0,1,11,21,10,1,0,1,20,60,58,15,1,0,1,

%T 37,161,244,141,21,1,0,1,70,428,900,857,318,28,1,0,1,135,1149,3164,

%U 4225,2787,685,36,1,0,1,264,3132,10990,18945,18196,8704,1434,45,1

%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * j^k.

%H OEIS Wiki, <a href="http://oeis.org/wiki/Eulerian_polynomials">Eulerian polynomials</a>.

%F G.f. of column k: x*A_k(x)/((1-k*x) * (1-x)^(k+1)), where A_n(x) are the Eulerian polynomials for k > 0.

%F T(0,k) = 0^k; T(n,k) = k*T(n-1,k) + n^k.

%e Square array begins:

%e 1, 0, 0, 0, 0, 0, 0, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 3, 6, 11, 20, 37, 70, ...

%e 1, 6, 21, 60, 161, 428, 1149, ...

%e 1, 10, 58, 244, 900, 3164, 10990, ...

%e 1, 15, 141, 857, 4225, 18945, 81565, ...

%e 1, 21, 318, 2787, 18196, 102501, 536046, ...

%o (PARI) T(n, k) = sum(j=0, n, k^(n-j)*j^k);

%Y Columns k=0..5 give A000012, A000217, A047520, A066999, A067534, A218376.

%Y Main diagonal gives A368505.

%Y Cf. A368486.

%K nonn,tabl

%O 0,9

%A _Seiichi Manyama_, Dec 27 2023