login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067534
a(n) = 4^n * sum_{i=1,n} i^4/4^i.
4
1, 20, 161, 900, 4225, 18196, 75185, 304836, 1225905, 4913620, 19669121, 78697220, 314817441, 1259308180, 5037283345, 20149198916, 80596879185, 322387621716, 1289550617185, 5158202628740, 20632810709441
OFFSET
1,2
FORMULA
1/81 * [380*4^n - 27n^4 - 144n^3 - 360n^2 - 528n - 380]. - Ralf Stephan, May 08 2004
a(1)=1, a(2)=20, a(3)=161, a(4)=900, a(5)=4225, a(6)=18196, a(n)= 9*a(n-1)- 30*a(n-2)+50*a(n-3)-45*a(n-4)+21*a(n-5)-4*a(n-6). - Harvey P. Dale, Jul 15 2012
From Peter Bala, Nov 29 2012, (Start)
Recurrence equation: a(n) = 4*a(n-1) + n^4. See A047520 and A066999.
O.g.f.: (x + 11*x^2 + 11*x^3 + x^4)/((1 - 4*x)*(1 - x)^5) = x + 20*x^2 + 161*x^3 + .... (end)
MATHEMATICA
Table[4^n*Sum[i^4/4^i, {i, n}], {n, 30}] (* or *) LinearRecurrence[ {9, -30, 50, -45, 21, -4}, {1, 20, 161, 900, 4225, 18196}, 30] (* Harvey P. Dale, Jul 15 2012 *)
CROSSREFS
Sequence in context: A125357 A126515 A118676 * A041768 A221870 A289181
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 27 2002
STATUS
approved