login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041768
Numerators of continued fraction convergents to sqrt(405).
2
20, 161, 6460, 51841, 2080100, 16692641, 669785740, 5374978561, 215668928180, 1730726404001, 69444725088220, 557288527109761, 22360985809478660, 179445175002939041, 7200167985927040300, 57780789062419261441, 2318431730482697497940, 18605234632923999244961
OFFSET
0,1
FORMULA
G.f.: -(x^3-20*x^2-161*x-20) / ((x^2-18*x+1)*(x^2+18*x+1)). - Vincenzo Librandi, Nov 08 2013, simplified by Colin Barker, Dec 28 2013
a(n) = 322*a(n-2)-a(n-4). - Vincenzo Librandi, Nov 08 2013, simplified by Colin Barker, Dec 28 2013
MATHEMATICA
Numerator[Convergents[Sqrt[405], 30]] (* Vincenzo Librandi, Nov 07 2013 *)
CoefficientList[Series[(20 + 161 x + 6460 x^2 + 51841 x^3 + 6460 x^4 - 161 x^5 + 20 x^6 - x^7)/(1 - 103682 x^4 + x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 08 2013 *)
LinearRecurrence[{0, 322, 0, -1}, {20, 161, 6460, 51841}, 20] (* Harvey P. Dale, Apr 28 2022 *)
PROG
(Magma) I:=[20, 161, 6460, 51841, 2080100, 16692641, 669785740, 5374978561]; [n le 8 select I[n] else 103682*Self(n-4)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, Nov 08 2013
CROSSREFS
Sequence in context: A126515 A118676 A067534 * A221870 A289181 A056114
KEYWORD
nonn,frac,easy,less
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 28 2013
STATUS
approved