login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056114
Expansion of (1+9*x)/(1-x)^11.
2
1, 20, 165, 880, 3575, 12012, 35035, 91520, 218790, 486200, 1016158, 2015520, 3821090, 6963880, 12257850, 20920064, 34730575, 56241900, 89049675, 138138000, 210315105, 314757300, 463681725, 673171200, 964177500, 1363732656, 1906401420, 2636011840, 3607704980
OFFSET
0,2
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = (n+1)*binomial(n+9, 9).
G.f.: (1+9*x)/(1-x)^11.
a(n) = A245334(n+9,9)/A000142(9). - Reinhard Zumkeller, Aug 31 2014
From G. C. Greubel, Jan 18 2020: (Start)
a(n) = 10*binomial(n+10,10) - 9*binomial(n+9,9).
E.g.f.: (9! +6894720*x +22861440*x^2 +26853120*x^3 +14605920*x^4 + 4191264*x^5 +677376*x^6 +63072*x^7 +3321*x^8 +91*x^9 +x^10)*exp(x)/9!. (End)
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 3*Pi^2/2 - 1077749/78400.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/4 - 24576*log(2)/35 + 37652469/78400. (End)
MAPLE
a:=n->(sum((numbcomp(n, 10)), j=10..n)):seq(a(n), n=10..34); # Zerinvary Lajos, Aug 26 2008
MATHEMATICA
CoefficientList[Series[(1+9x)/(1-x)^11, {x, 0, 40}], x] (* or *) LinearRecurrence[ {11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 20, 165, 880, 3575, 12012, 35035, 91520, 218790, 486200, 1016158}, 40] (* Harvey P. Dale, Jun 05 2018 *)
PROG
(Haskell)
a056114 n = (n + 1) * a007318' (n + 9) 9
-- Reinhard Zumkeller, Aug 31 2014
(PARI) vector(41, n, n*binomial(n+8, 9) ) \\ G. C. Greubel, Jan 18 2020
(Magma) [(n+1)*Binomial(n+9, 9): n in [0..40]]; // G. C. Greubel, Jan 18 2020
(Sage) [(n+1)*binomial(n+9, 9) for n in (0..40)] # G. C. Greubel, Jan 18 2020
(GAP) List([0..40], n-> (n+1)*Binomial(n+9, 9)); # G. C. Greubel, Jan 18 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jun 12 2000
STATUS
approved