login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056117
Expansion of (1+8*x)/(1-x)^9.
3
1, 17, 117, 525, 1815, 5247, 13299, 30459, 64350, 127270, 238238, 425646, 730626, 1211250, 1947690, 3048474, 4657983, 6965343, 10214875, 14718275, 20868705, 29156985, 40190085, 54712125, 73628100, 98030556, 129229452, 168785452
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
FORMULA
a(n) = (9*n+8)*binomial(n+7, 7)/8.
G.f.: (1+8*x)/(1-x)^9.
From G. C. Greubel, Jan 18 2020: (Start)
a(n) = 9*binomial(n+8,8) - 8*binomial(n+7,7).
E.g.f.: (40320 + 645120*x + 1693440*x^2 + 1505280*x^3 + 588000*x^4 + 112896*x^5 + 10976*x^6 + 512*x^7 + 9*x^8)*exp(x)/40320. (End)
MAPLE
seq( (9*n+8)*binomial(n+7, 7)/8, n=0..30); # G. C. Greubel, Jan 18 2020
MATHEMATICA
Table[9*Binomial[n+8, 8] -8*Binomial[n+7, 7], {n, 0, 30}] (* G. C. Greubel, Jan 18 2020 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 17, 117, 525, 1815, 5247, 13299, 30459, 64350}, 30] (* Harvey P. Dale, Nov 23 2022 *)
PROG
(PARI) vector(31, n, (9*n-1)*binomial(n+6, 7)/8) \\ G. C. Greubel, Jan 18 2020
(Magma) [(9*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // G. C. Greubel, Jan 18 2020
(Sage) [(9*n+8)*binomial(n+7, 7)/8 for n in (0..30)] # G. C. Greubel, Jan 18 2020
(GAP) List([0..30], n-> (9*n+8)*Binomial(n+7, 7)/8 ); # G. C. Greubel, Jan 18 2020
CROSSREFS
Cf. A093644 ((9, 1) Pascal, column m=8). Partial sums of A052206.
Sequence in context: A044349 A044730 A086020 * A196575 A003109 A066607
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 04 2000
STATUS
approved