OFFSET
0,2
COMMENTS
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11,12} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11,12} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 11*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Index entries for linear recurrences with constant coefficients, signature (12).
FORMULA
a(n) = 12*a(n-1) + (-1)^n*C(2, 2-n).
G.f.: (1-x)^2/(1-12*x).
a(n) = Sum_{k=0..n} A201780(n,k)*10^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (23 - 12*x + 121*exp(12*x))/144. - G. C. Greubel, Jan 18 2020
MAPLE
1, 10, seq( 121*12^(n-2), n=2..20); # G. C. Greubel, Jan 18 2020
MATHEMATICA
LinearRecurrence[{12}, {1, 10, 121}, 20] (* Harvey P. Dale, Oct 20 2015 *)
PROG
(PARI) concat([1, 10], vector(20, n, 121*12^(n-1) )) \\ G. C. Greubel, Jan 18 2020
(Magma) [1, 10] cat [121*12^(n-2): n in [2..20]]; // G. C. Greubel, Jan 18 2020
(Sage) [1, 10]+[121*12^(n-2) for n in (2..20)] # G. C. Greubel, Jan 18 2020
(GAP) concatenation([1, 10], List([2..20], n-> 121*12^(n-2) )); # G. C. Greubel, Jan 18 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jul 04 2000
EXTENSIONS
More terms from James A. Sellers, Jul 04 2000
STATUS
approved