login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056116
a(n) = 121*12^(n-2), a(0)=1, a(1)=10.
2
1, 10, 121, 1452, 17424, 209088, 2509056, 30108672, 361304064, 4335648768, 52027785216, 624333422592, 7492001071104, 89904012853248, 1078848154238976, 12946177850867712, 155354134210412544
OFFSET
0,2
COMMENTS
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11,12} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11,12} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 11*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = 12*a(n-1) + (-1)^n*C(2, 2-n).
G.f.: (1-x)^2/(1-12*x).
a(n) = Sum_{k=0..n} A201780(n,k)*10^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (23 - 12*x + 121*exp(12*x))/144. - G. C. Greubel, Jan 18 2020
MAPLE
1, 10, seq( 121*12^(n-2), n=2..20); # G. C. Greubel, Jan 18 2020
MATHEMATICA
LinearRecurrence[{12}, {1, 10, 121}, 20] (* Harvey P. Dale, Oct 20 2015 *)
PROG
(PARI) concat([1, 10], vector(20, n, 121*12^(n-1) )) \\ G. C. Greubel, Jan 18 2020
(Magma) [1, 10] cat [121*12^(n-2): n in [2..20]]; // G. C. Greubel, Jan 18 2020
(Sage) [1, 10]+[121*12^(n-2) for n in (2..20)] # G. C. Greubel, Jan 18 2020
(GAP) concatenation([1, 10], List([2..20], n-> 121*12^(n-2) )); # G. C. Greubel, Jan 18 2020
CROSSREFS
Sequence in context: A202808 A091692 A098309 * A246643 A233084 A081784
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jul 04 2000
EXTENSIONS
More terms from James A. Sellers, Jul 04 2000
STATUS
approved