login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056002
a(n) = (10^2)*11^(n-2); a(0)=1, a(1)=9.
2
1, 9, 100, 1100, 12100, 133100, 1464100, 16105100, 177156100, 1948717100, 21435888100, 235794769100, 2593742460100, 28531167061100, 313842837672100, 3452271214393100, 37974983358324100, 417724816941565100
OFFSET
0,2
COMMENTS
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 10*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n)=11a(n-1)+[(-1)^n]*C(2, 2-n). G.f.(x)=(1-x)^2/(1-11x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*9^k. - Philippe Deléham, Dec 05 2011
MATHEMATICA
Join[{1, 9}, 100*11^Range[0, 20]] (* or *) Join[{1, 9}, NestList[11#&, 100, 20]] (* Harvey P. Dale, May 24 2012 *)
CROSSREFS
Cf. A001020.
Sequence in context: A266098 A065736 A092936 * A060150 A202833 A356131
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jun 18 2000
EXTENSIONS
More terms from James A. Sellers, Jul 04 2000
STATUS
approved