login
A056004
Initial step in Goodstein sequences: write n in hereditary representation base 2, bump to base 3, then subtract 1.
22
0, 2, 3, 26, 27, 29, 30, 80, 81, 83, 84, 107, 108, 110, 111, 7625597484986, 7625597484987, 7625597484989, 7625597484990, 7625597485013, 7625597485014, 7625597485016, 7625597485017, 7625597485067, 7625597485068, 7625597485070, 7625597485071, 7625597485094
OFFSET
1,2
COMMENTS
To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k: e.g., 2^18 = 2^(2^4 + 2) = 2^(2^(2^2) + 2). "Bump to base 3" means to replace all the 2's in that representation by 3. - M. F. Hasler, Feb 19 2017
LINKS
A. E. Caicedo, Goodstein's function, Revista Colombiana de Matemáticas 41 (2007), 381-391.
R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
L. Kirby, and J. Paris, Accessible independence results for Peano arithmetic, Bull. London Mathematical Society, 14 (1982), 285-293.
Eric Weisstein's World of Mathematics, Hereditary Representation.
Eric Weisstein's World of Mathematics, Goodstein Sequence.
EXAMPLE
a(18)=7625597484989 since 18=2^(2^2)+2^1 which when bumped from 2 to 3 becomes 3^(3^3)+3^1=76255974849890 and when 1 is subtracted gives 7625597484989.
PROG
(Haskell) -- See Link
(PARI) A056004(n)=sum(i=1, #n=binary(n), if(n[i], 3^if(#n-i<2, #n-i, A056004(#n-i)+1)))-1 \\ See A266201 for more general code. - M. F. Hasler, Feb 19 2017
CROSSREFS
Using G_k to denote the k-th step, this is the first in the following list: A056004: G_1(n), A057650: G_2(n), A059934: G_3(n), A059935: G_4(n), A059936: G_5(n); A266201: G_n(n); A056041.
Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A222117: G_n(15), A059933: G_n(16), A211378: G_n(19).
See A222112 for an alternate version.
Sequence in context: A358390 A130975 A002748 * A032812 A099006 A041659
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 04 2000
EXTENSIONS
Edited by M. F. Hasler, Feb 19 2017
STATUS
approved