login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056005
Number of 3-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 3 labeled nodes and n hyperedges.
10
0, 0, 0, 2, 19, 90, 302, 820, 1926, 4068, 7920, 14454, 25025, 41470, 66222, 102440, 154156, 226440, 325584, 459306, 636975, 869858, 1171390, 1557468, 2046770, 2661100, 3425760, 4369950, 5527197, 6935814, 8639390, 10687312, 13135320, 16046096, 19489888
OFFSET
0,4
COMMENTS
T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes have a hyperedge containing one but not the other node.
LINKS
K. S. Brown, Dedekind's problem
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
FORMULA
a(n) = C(n+7, 7) - 6*C(n+5, 5) + 6*C(n+4, 4) + 3*C(n+3, 3) - 6*C(n+2, 2) + 2*C(n+1, 1).
a(n) = n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040.
G.f.: 1/(1-x)^8 - 6/(1-x)^6 + 6/(1-x)^5 + 3/(1-x)^4 - 6/(1-x)^3 + 2/(1-x)^2.
G.f.: x^3*(2 + 3*x - 6*x^2 + 2*x^3)/(1-x)^8.
Recurrence: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
Generally, recurrence for the number of m-element ordered antichains on an unlabeled n-element set is a(m, n) = C(2^m, 1)*a(m, n - 1) - C(2^m, 2)*a(m, n - 2) + C(2^m, 3)*a(m, n - 3) + ... + ( - 1)^(k - 1)*C(2^m, k)*a(m, n - k) + ... - a(m, n - 2^m).
a(n) = A000580(n+7) - 6*A000389(n+5) + 6*A000332(n+4) + 3*A000292(n+1) - 6*A000217(n+1) + 2*A000027(n+1). - R. J. Mathar, Nov 16 2007
EXAMPLE
There are 19 3-element ordered antichains on an unlabeled 4-element set: ({4},{3},{2}), ({4},{3},{1,2}), ({4},{2,3},{1}), ({4},{2,3},{1,3}), ({3,4},{2},{1}), ({3,4},{2},{1,4}), ({3,4},{2,4},{2,3}), ({3,4},{2,4},{1}), ({3,4},{2,4},{1,4}), ({3,4},{2,4},{1,3}), ({3,4},{2,4},{1,2}), ({3,4},{2,4},{1,2,3}), ({3,4},{1,2},{2,4}), ({3,4},{1,2,4},{2,3}), ({3,4},{1,2,4},{1,2,3}), ({2,3,4},{1,4},{1,3}), ({2,3,4},{1,4},{1,2,3}), ({2,3,4},{1,3,4},{1,2}), ({2,3,4},{1,3,4},{1,2,4}).
MATHEMATICA
Table[Binomial[n+7, 7]-6Binomial[n+5, 5]+6Binomial[n+4, 4]+3Binomial[n+3, 3]- 6Binomial[n+2, 2]+ 2Binomial[n+1, 1], {n, 0, 40}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 2, 19, 90, 302, 820}, 40] (* Harvey P. Dale, Jul 27 2011 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(x^3*(2+3*x-6*x^2+2*x^3)/(1-x)^8)) \\ G. C. Greubel, Oct 06 2017
(Magma) [n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040: n in [0..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
Cf. A047707 for 3-element (unordered) antichains on a labeled n-element set.
Sequence in context: A331898 A054570 A135436 * A034572 A041393 A107123
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 24 2000
EXTENSIONS
More terms from Harvey P. Dale, Jul 27 2011
STATUS
approved