OFFSET
0,1
COMMENTS
If n is even, a(n) = 2*2^(n/2) + 1, since 2^n = (2^(n/2))^2, and a(n) = (2^(n/2) + 1)^2 - (2^(n/2))^2 = 2*2^(n/2) + 1. - Jean-Marc Rebert, Mar 02 2016
If n is odd, a(n) = 4*a(n-2) or 4*a(n-2) - 4*sqrt(a(n-2) + 2^(n-2)) + 1. - Robert Israel, Mar 02 2016
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
FORMULA
a(2k) = 2*2^k + 1 = 2*a(2(k-1)) - 1. - Jean-Marc Rebert, Mar 02 2016
EXAMPLE
a(5)=6^2-2^5=4; a(6)=9^2-2^6=17
MAPLE
f:= proc(n) local m;
if n::even then m:= 2*2^(n/2)+1
else m:= ceil(sqrt(2)*2^((n-1)/2))
fi;
m^2-2^n
end proc:
map(f, [$0..100]); # Robert Israel, Mar 02 2016
MATHEMATICA
ssg[n_]:=Module[{s=2^n}, (1+Floor[Sqrt[s]])^2-s]; Array[ssg, 50, 0] (* Harvey P. Dale, Aug 22 2015 *)
Table[((Floor[2^(n/2)] + 1)^2 - 2^n), {n, 0, 50}] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(Magma) [(Floor(2^(n/2))+1)^2-2^n : n in [0..50]]; // Vincenzo Librandi, Mar 03 2016
(Python)
from math import isqrt
def A056008(n): return (isqrt(m:=1<<n)+1)**2-m # Chai Wah Wu, Apr 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 24 2000
STATUS
approved