login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056008
Difference between (smallest square strictly greater than 2^n) and 2^n.
3
3, 2, 5, 1, 9, 4, 17, 16, 33, 17, 65, 68, 129, 89, 257, 356, 513, 697, 1025, 1337, 2049, 2449, 4097, 4001, 8193, 4417, 16385, 17668, 32769, 24329, 65537, 4633, 131073, 18532, 262145, 74128, 524289, 296512, 1048577, 1186048, 2097153, 1778369
OFFSET
0,1
COMMENTS
If n is even, a(n) = 2*2^(n/2) + 1, since 2^n = (2^(n/2))^2, and a(n) = (2^(n/2) + 1)^2 - (2^(n/2))^2 = 2*2^(n/2) + 1. - Jean-Marc Rebert, Mar 02 2016
If n is odd, a(n) = 4*a(n-2) or 4*a(n-2) - 4*sqrt(a(n-2) + 2^(n-2)) + 1. - Robert Israel, Mar 02 2016
LINKS
FORMULA
a(n) = (floor(2^(n/2))+1)^2 - 2^n = (A017910(n)+1)^2 - A000079(n). - Vladeta Jovovic, May 01 2003
a(2k) = 2*2^k + 1 = 2*a(2(k-1)) - 1. - Jean-Marc Rebert, Mar 02 2016
EXAMPLE
a(5)=6^2-2^5=4; a(6)=9^2-2^6=17
MAPLE
f:= proc(n) local m;
if n::even then m:= 2*2^(n/2)+1
else m:= ceil(sqrt(2)*2^((n-1)/2))
fi;
m^2-2^n
end proc:
map(f, [$0..100]); # Robert Israel, Mar 02 2016
MATHEMATICA
ssg[n_]:=Module[{s=2^n}, (1+Floor[Sqrt[s]])^2-s]; Array[ssg, 50, 0] (* Harvey P. Dale, Aug 22 2015 *)
Table[((Floor[2^(n/2)] + 1)^2 - 2^n), {n, 0, 50}] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(Magma) [(Floor(2^(n/2))+1)^2-2^n : n in [0..50]]; // Vincenzo Librandi, Mar 03 2016
(Python)
from math import isqrt
def A056008(n): return (isqrt(m:=1<<n)+1)**2-m # Chai Wah Wu, Apr 28 2023
CROSSREFS
Bisections: A000051, A238454.
Sequence in context: A111701 A093527 A088233 * A074830 A369043 A182983
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 24 2000
STATUS
approved