login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369043
LCM-transform of Blue code (A193231).
6
1, 3, 2, 5, 2, 1, 7, 1, 1, 1, 13, 1, 11, 3, 2, 17, 2, 1, 19, 1, 1, 23, 1, 1, 31, 29, 1, 3, 1, 1, 5, 1, 1, 1, 7, 1, 1, 53, 1, 1, 61, 1, 1, 1, 1, 1, 59, 1, 1, 1, 2, 1, 1, 1, 37, 1, 1, 1, 47, 1, 41, 43, 1, 1, 1, 1, 1, 1, 3, 83, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 71, 1, 1, 2, 1, 67, 1, 1, 1, 73, 1, 79, 1, 1, 1, 103, 101
OFFSET
1,2
COMMENTS
Blue code, A193231, is a self-inverse permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A193231(n)) = A000523(n), from which it immediately follows that A193231 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A193231(n)), for n >= 1.
FORMULA
a(n) = lcm {1..A193231(n)} / lcm {1..A193231(n-1)}.
a(n) = A014963(A193231(n)). [See comments.]
For n >= 1, Product_{d|n} a(A193231(d)) = n. [Implied by above.]
PROG
(PARI)
up_to = 65537; \\ Checked up to 2^17;
LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2, len, g[n] = lcm(g[n-1], v[n]); b[n] = g[n]/g[n-1]); (b); };
A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
v369043 = LCMtransform(vector(up_to, i, A193231(i)));
A369043(n) = v369043[n];
A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 12 2024
STATUS
approved