OFFSET
5,1
COMMENTS
T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
K. S. Brown, Dedekind's problem
FORMULA
a(n)=C(n + 127, 127) - 42*C(n + 95, 95) + 210*C(n + 79, 79) + 140*C(n + 71, 71) + 210*C(n + 67, 67) - 84*C(n + 65, 65) + 14*C(n + 64, 64) - 819*C(n + 63, 63) - 2520*C(n + 59, 59) + 2730*C(n + 55, 55) + 840*C(n + 53, 53) + 840*C(n + 51, 51) - 420*C(n + 50, 50) + 2940*C(n + 49, 49) + 630*C(n + 47, 47) - 5040*C(n + 45, 45) + 840*C(n + 44, 44) - 1260*C(n + 43, 43) +
1680*C(n + 42, 42) - 9660*C(n + 41, 41) + 1260*C(n + 40, 40) + 3360*C(n + 39, 39) - 7560*C(n + 38, 38) + 11130*C(n + 37, 37) + 5880*C(n + 36, 36) + 9240*C(n + 35, 35) + 2982*C(n + 34, 34) - 6300*C(n + 33, 33) - 8652*C(n + 32, 32) - 9905*C(n + 31, 31) - 8400*C(n + 30, 30) - 8540*C(n + 29, 29) + 13860*C(n + 28, 28) + 14490*C(n + 27, 27) - 5040*C(n + 26, 26) + 10500*C(n + 25, 25) +
10080*C(n + 24, 24) - 8120*C(n + 23, 23) - 15050*C(n + 22, 22) - 5040*C(n + 21, 21) - 11340*C(n + 20, 20) + 20580*C(n + 19, 19) + 15750*C(n + 18, 18) - 1540*C(n + 17, 17) - 5810*C(n + 16, 16) - 16485*C(n + 15, 15) - 21420*C(n + 14, 14) + 26250*C(n + 13, 13) + 21000*C(n + 12, 12) - 29820*C(n + 11, 11) + 3500*C(n + 10, 10) + 17640*C(n + 9, 9) + 2940*C(n + 8, 8) - 16016*C(n + 7, 7) + 4410*C(n + 6, 6) - 9744*C(n + 5, 5) + 9744*C(n + 4, 4) + 1764*C(n + 3, 3) - 3528*C(n + 2, 2) + 720*C(n + 1, 1).
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 26 2000
STATUS
approved