OFFSET
0,2
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = (n+1)*C(n+8, 8).
G.f.: (1+8*x)/(1-x)^10.
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi^2/3 - 266681/22050.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2/3 - 38656*log(2)/105 + 611409/2450. (End)
MAPLE
a:=n->(sum((numbcomp(n, 9)), j=9..n)):seq(a(n), n=9..35); # Zerinvary Lajos, Aug 26 2008
MATHEMATICA
a[n_] := (n+1)*Binomial[n+8, 8]; Array[a, 50, 0] (* Amiram Eldar, Jan 15 2023 *)
PROG
(Haskell)
a056003 n = (n + 1) * a007318' (n + 8) 8
-- Reinhard Zumkeller, Aug 31 2014
(PARI) a(n) = (n+1)*binomial(n+8, 8) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jun 12 2000
STATUS
approved