login
A056003
A second-order recursive sequence.
6
1, 18, 135, 660, 2475, 7722, 21021, 51480, 115830, 243100, 481338, 906984, 1637610, 2848860, 4796550, 7845024, 12503007, 19468350, 29683225, 44401500, 65270205, 94427190, 134617275, 189329400, 262957500, 360988056, 490217508, 659002960, 877549860, 1158240600
OFFSET
0,2
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = (n+1)*C(n+8, 8).
G.f.: (1+8*x)/(1-x)^10.
a(n) = A245334(n+8,8)/A000142(8). - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi^2/3 - 266681/22050.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2/3 - 38656*log(2)/105 + 611409/2450. (End)
MAPLE
a:=n->(sum((numbcomp(n, 9)), j=9..n)):seq(a(n), n=9..35); # Zerinvary Lajos, Aug 26 2008
MATHEMATICA
a[n_] := (n+1)*Binomial[n+8, 8]; Array[a, 50, 0] (* Amiram Eldar, Jan 15 2023 *)
PROG
(Haskell)
a056003 n = (n + 1) * a007318' (n + 8) 8
-- Reinhard Zumkeller, Aug 31 2014
(PARI) a(n) = (n+1)*binomial(n+8, 8) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Partial sums of A056117.
Cf. A093644 ((9, 1) Pascal, column m=9).
Cf. A000142, A007318, A052206, A245334, A254142 (partial sums).
Sequence in context: A320677 A010824 A022710 * A337002 A239208 A114239
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jun 12 2000
STATUS
approved