This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056000 a(n) = n*(n+9)/2. 27
 0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Numbers m >= 0 such that 8m+81 is a square. - Bruce J. Nicholson, Jul 29 2017 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A000217(n+4) - 10. G.f.: x(5-4x)/(1-x)^3. From Zerinvary Lajos, Oct 01 2006: (Start) a(n) = A000096(n) + 3*n. a(n) = A055999(n) + n. a(n) = A056115(n) - n. (End) a(n) = binomial(n,2) - 4*n, n >= 9. - Zerinvary Lajos, Nov 25 2006 a(n) = A126890(n,4) for n > 3. - Reinhard Zumkeller, Dec 30 2006 a(n) = A028569(n)/2. - Zerinvary Lajos, Feb 12 2007 If we define f(n,i,a) = Sum_{k=0..(n-i)} binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,5), for n >= 1. - Milan Janjic, Dec 20 2008 a(n) = n + a(n-1) + 4. - Vincenzo Librandi, Aug 07 2010 a(n) = Sum_{k=1..n} (k+4). - Gary Detlefs, Aug 10 2010 Sum_{n>=1} 1/a(n) = 7129/11340. - R. J. Mathar, Jul 14 2012 a(n) = 5n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013 E.g.f.: (1/2)*(x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017 MATHEMATICA Table[n (n + 9)/2, {n, 0, 50}] (* or *) FoldList[#1 + #2 + 4 &, Range[0, 50]] (* or *) Table[PolygonalNumber[n + 4] - 10, {n, 0, 50}] (* or *) CoefficientList[Series[x (5 - 4 x)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jul 30 2017 *) PROG (PARI) a(n)=n*(n+9)/2 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000096, A055998, A055999, A001477. Column m=2 of (1, 5)-Pascal triangle A096940. Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090. Sequence in context: A145005 A004083 A190365 * A080566 A094684 A240438 Adjacent sequences:  A055997 A055998 A055999 * A056001 A056002 A056003 KEYWORD easy,nonn AUTHOR Barry E. Williams, Jun 16 2000 EXTENSIONS More terms from James A. Sellers, Jul 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)