login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140090 a(n) = n*(3*n + 7)/2. 32
0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is mentioned in the Guo-Niu Han's paper, chapter 6: Dictionary of the standard puzzle sequences, p. 19 (see link). - Omar E. Pol, Oct 28 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]

Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(5 - 2*x)/(1 - x)^3. - Bruno Berselli, Feb 11 2011

a(n) = (3*n^2 + 7*n)/2.

a(n) = a(n-1) + 3*n + 2 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010

E.g.f.: (1/2)*(3*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

From Amiram Eldar, Feb 22 2022: (Start)

Sum_{n>=1} 1/a(n) = 117/98 - Pi/(7*sqrt(3)) - 3*log(3)/7.

Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(7*sqrt(3)) + 4*log(2)/7 - 75/98. (End)

MATHEMATICA

s=-1; lst={}; Do[s+=n+n+n-1; If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 04 2008 *)

Table[Sum[i + n - 3, {i, 4, n}], {n, 3, 50}] (* Zerinvary Lajos, Jul 11 2009 *)

LinearRecurrence[{3, -3, 1}, {0, 5, 13}, 50] (* Harvey P. Dale, Jan 17 2022 *)

PROG

(PARI) a(n)=n*(3*n+7)/2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Cf. numbers of the form n*(d*n + 10 - d)/2: A008587, A056000, A028347, A014106, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

Sequence in context: A119248 A114998 A340564 * A271937 A121511 A283750

Adjacent sequences: A140087 A140088 A140089 * A140091 A140092 A140093

KEYWORD

easy,nonn

AUTHOR

Omar E. Pol, May 22 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:47 EST 2022. Contains 358611 sequences. (Running on oeis4.)