The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140093 G.f. satisfies: A(x - x^3) = x^3 - x^9. 0
 1, 0, 3, 0, 12, 0, 54, 0, 264, 0, 1365, 0, 7344, 0, 40698, 0, 230736, 0, 1332045, 0, 7803900, 0, 46280520, 0, 277294752, 0, 1676056044, 0, 10207492512, 0, 62576750610, 0, 385856498592, 0, 2391506423565, 0, 14890534347780, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,3 LINKS FORMULA a(2n)=0; a(2n+1) = 6*C(3*n-3,n-2)/n for n>1 with a(1)=0, a(3)=1. G.f.: A(x) = x^3 + 3*x^5*G(x^2)^4 where G(x) = 1 + x*G(x)^3 = g.f. of A001764. Define A_{n+1}(x) = A( A_{n}(x) ) with A_0(x)=x, then A_{n}(x) = (x*G(x^2))^(3^n) - (x*G(x^2))^(3^(n+1)) and so Sum_{n>=0} A_{n}(x) = x*G(x^2) where G(x) = g.f. of A001764. EXAMPLE A(x) = x^3 + 3*x^5 + 12*x^7 + 54*x^9 + 264*x^11 + 1365*x^13 +... x^3 - x^9 = (x-x^3)^3 + 3*(x-x^3)^5 + 12*(x-x^3)^7 + 54*(x-x^3)^9 +... Let G(x) = 1 + x*G(x)^3 = g.f. of A001764, then A(x) = (x*G(x^2))^3 - (x*G(x^2))^9 ; A(A(x)) = (x*G(x^2))^9 - (x*G(x^2))^27 ; A(A(A(x))) = (x*G(x^2))^27 - (x*G(x^2))^81 ; etc. Related expansions are: G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... A(A(x)) = x^9 + 9*x^11 + 63*x^13 + 408*x^15 + 2565*x^17 +... A(A(A(x))) = x^27 + 27*x^29 + 432*x^31 + 5355*x^33 + 56943*x^35 +... PROG (PARI) a(n)=if(n<3 || n%2==0, 0, if(n==3, 1, 12*binomial(3*(n-1)/2-3, (n-1)/2-2)/(n-1))) CROSSREFS Cf A001764 (enumerates ternary trees). Sequence in context: A019264 A028851 A132221 * A194093 A055314 A110890 Adjacent sequences:  A140090 A140091 A140092 * A140094 A140095 A140096 KEYWORD nonn AUTHOR Paul D. Hanna, May 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 03:05 EDT 2021. Contains 346379 sequences. (Running on oeis4.)