|
|
A115067
|
|
a(n) = (3*n^2 - n - 2)/2.
|
|
37
|
|
|
0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 6720. - Philippe A.J.G. Chevalier, Dec 28 2015
For n > 1, a(n) is also the number of (not necessarily maximal) cliques in the (n-1)-Andrasfai graph. - Eric W. Weisstein, Nov 29 2017
a(n+1) is the sum of the lengths of all the segments used to draw a square of side n representing the most classic pattern for walls made of 2 X 1 bricks, known as a 1-over-2 pattern, where each joint between neighboring bricks falls over the center of the brick below. - Stefano Spezia, Jun 05 2021
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Clique.
|
|
FORMULA
|
a(n) = (3*n+2)*(n-1)/2.
Sum_{n>=2} 1/a(n) = Pi/(5*sqrt(3)) - 3*log(3)/5 + 21/25.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/5 - 2*Pi/(5*sqrt(3)) + 9/25. (End)
a(n) = Sum_{j=0..n-2} (2*n-j) = Sum_{j=0..n-2} (n+2+j), for n>=1. See the trapezoid link. - Leo Tavares, May 20 2022
|
|
EXAMPLE
|
_ _ _ _ _ _
|_| |_|_| |_|_ _|
|_ _| |_ _|_|
|_|_ _|
a(2) = 4 a(3) = 11 a(4) = 21
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_ _|_|
a(5) = 34 a(6) = 50 a(7) = 69
|
|
MATHEMATICA
|
CoefficientList[Series[(-4 + x) x/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
|
|
PROG
|
|
|
CROSSREFS
|
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|