OFFSET
1,3
COMMENTS
Cubic analog of A070306. Always an integer.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
FORMULA
From Amiram Eldar, Nov 30 2024: (Start)
Multiplicative with a(p^e) = (p-1)*p^(e-1)/3 if p == 1 (mod 3), and (p-1)*p^(e-1) otherwise. (End)
MAPLE
with(numtheory):
a:= n-> phi(n)/3^add(`if`(irem(p, 3)=1, 1, 0), p=factorset(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 17 2019
MATHEMATICA
b[n_] := Count[FactorInteger[n][[All, 1]], p_ /; Mod[p, 3] == 1]; b[1] = 0;
a[n_] := EulerPhi[n]/3^b[n];
Table[a[n], {n, 1, 81}] (* Jean-François Alcover, Feb 17 2019 *)
f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 3] == 1, 3, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2024 *)
PROG
(PARI) {b(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]%3==1)};
{a(n)= eulerphi(n)/3^b(n)};
vector(80, n, a(n)) \\ G. C. Greubel, Feb 17 2019
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)/if(f[i, 1] % 3 == 1, 3, 1)); } \\ Amiram Eldar, Nov 30 2024
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Steven Finch, Mar 01 2006
EXTENSIONS
a(1)=1 prepended by Alois P. Heinz, Feb 17 2019
Keyword mult added by Amiram Eldar, Nov 30 2024
STATUS
approved