login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059845
a(n) = n*(3*n + 11)/2.
19
0, 7, 17, 30, 46, 65, 87, 112, 140, 171, 205, 242, 282, 325, 371, 420, 472, 527, 585, 646, 710, 777, 847, 920, 996, 1075, 1157, 1242, 1330, 1421, 1515, 1612, 1712, 1815, 1921, 2030, 2142, 2257, 2375, 2496, 2620, 2747, 2877, 3010, 3146, 3285, 3427, 3572, 3720
OFFSET
0,2
COMMENTS
Maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian n-manifold to be realizable as a sub-manifold. - comment edited by Gene Ward Smith, Jan 15 2017
LINKS
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
John Nash, The Imbedding Problem For Riemannian Manifolds, Annals of Mathematics, Vol. 63, No. 1, 1956, pp. 20-63.
FORMULA
a(n) = 3*n + a(n-1) + 4 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
G.f.: x*(7 - 4*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 17 2017
MAPLE
A059845:=n->n*(3*n + 11)/2: seq(A059845(n), n=0..100); # Wesley Ivan Hurt, Jan 15 2017
MATHEMATICA
Table[n (3n+11)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 7, 17}, 50] (* Harvey P. Dale, Mar 19 2017 *)
PROG
(PARI) a(n) = n*(3*n + 11)/2 \\ Harry J. Smith, Jun 29 2009
CROSSREFS
The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672, A140673, A140674, A140675, A151542.
Sequence in context: A356293 A294133 A088566 * A006142 A228345 A196167
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Mar 10 2001
STATUS
approved