login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088566
Primes p such that the p-th digit in the decimal expansion of Pi is 2.
3
7, 17, 29, 103, 113, 137, 281, 293, 457, 463, 547, 601, 631, 823, 1051, 1091, 1109, 1201, 1231, 1283, 1301, 1327, 1399, 1427, 1447, 1487, 1523, 1621, 1663, 1733, 1847, 1907, 1949, 2099, 2141, 2281, 2297, 2309, 2377, 2767, 3023, 3037, 3119, 3121, 3391, 3457
OFFSET
1,1
EXAMPLE
In the decimal digits of Pi = 3.14159265... the first 2 occurs as the 7th digit, and 7 is prime; therefore a(1) = 7.
PROG
(PARI) pizeros(n, d) = { default(realprecision, 5000); p = Pi; v = Vec(Str(p)); for(x=1, n, if(v[x] == Str(d) && isprime(x-1), print1(x-1", ")) ) }
(PARI) A088566_upto(N=3456, d=2)={localprec(N+20); [p|p<-primes([1, #N=digits(Pi\10^-N)]), N[p]==d]} \\ M. F. Hasler, Jul 28 2024
CROSSREFS
Primes in A053746.
Cf. A088563 (similar for digits 0), A088565 (for digits 1),
Cf. A000796 (decimal digits of Pi).
Sequence in context: A157417 A356293 A294133 * A059845 A006142 A228345
KEYWORD
nonn,base
AUTHOR
Cino Hilliard, Nov 19 2003
STATUS
approved