login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022268
a(n) = n*(11*n - 1)/2.
14
0, 5, 21, 48, 86, 135, 195, 266, 348, 441, 545, 660, 786, 923, 1071, 1230, 1400, 1581, 1773, 1976, 2190, 2415, 2651, 2898, 3156, 3425, 3705, 3996, 4298, 4611, 4935, 5270, 5616, 5973, 6341, 6720, 7110, 7511, 7923, 8346, 8780, 9225, 9681, 10148, 10626, 11115
OFFSET
0,2
COMMENTS
Number of sets with two elements that can be obtained by selecting distinct elements from two sets with 2n and 3n elements respectively and n common elements. - Polina S. Dolmatova (polinasport(AT)mail.ru), Jul 11 2003
FORMULA
G.f.: x*(5 + 6*x)/(1-x)^3. - Bruno Berselli, Feb 11 2011
a(n) = 11*n + a(n-1) - 6 for n>0. - Vincenzo Librandi, Aug 04 2010
a(n) = A000217(6*n-1) - A000217(5*n-1). - Bruno Berselli, Oct 17 2016
From Wesley Ivan Hurt, Dec 04 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = (1/9) * Sum_{i=n..10n-1} i. (End)
E.g.f.: (1/2)*(11*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
MAPLE
A022268:=n->n*(11*n - 1)/2: seq(A022268(n), n=0..50); # Wesley Ivan Hurt, Dec 04 2016
MATHEMATICA
Table[n (11 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 14 2016 *)
PROG
(PARI) a(n)=n*(11*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [n*(11*n - 1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 04 2016
CROSSREFS
Cf. index to sequence with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. similar sequences listed in A022288.
Sequence in context: A146846 A296200 A041825 * A201279 A146721 A099979
KEYWORD
nonn,easy
STATUS
approved