login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201279 a(n) = 6n^2 + 10n + 5. 4
5, 21, 49, 89, 141, 205, 281, 369, 469, 581, 705, 841, 989, 1149, 1321, 1505, 1701, 1909, 2129, 2361, 2605, 2861, 3129, 3409, 3701, 4005, 4321, 4649, 4989, 5341, 5705, 6081, 6469, 6869, 7281, 7705, 8141, 8589, 9049, 9521, 10005, 10501, 11009, 11529, 12061 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Numbers n where 6n-5 is a square of a number type 6n-1.

Also sequence found by reading the line from 5, in the direction 5, 21,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012

The spiral mentioned above naturally appears on a 'graphene' like lattice (planar net 6^3). The opposite diagonal is A080859. - Yuriy Sibirmovsky, Oct 04 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Yuriy Sibirmovsky, Diagonals of a 'graphene' number spiral.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1+x)*(5+x)/(1-x)^3. - Colin Barker, Jan 09 2012

a(n) = 1 + A033579(n+1). - Omar E. Pol, Jul 18 2012

a(n) = (n+1)*A001844(n+1)-n*A001844(n). [Bruno Berselli, Jan 15 2013]

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {5, 21, 49}, 50] (* Vincenzo Librandi, Dec 01 2011 *)

Table[6 n^2 + 10 n + 5, {n, 0, 44}] (* or *)

CoefficientList[Series[(1 + x) (5 + x)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)

PROG

(PARI) a(n)=6*n^2+10*n+5 \\ Charles R Greathouse IV, Nov 29 2011

(MAGMA) [6*n^2 + 10*n + 5: n in [0..60]]; // Vincenzo Librandi, Dec 01 2011

CROSSREFS

Cf. A136392, A080859.

Sequence in context: A296200 A041825 A022268 * A146721 A099979 A039659

Adjacent sequences:  A201276 A201277 A201278 * A201280 A201281 A201282

KEYWORD

nonn,easy

AUTHOR

Eleonora Echeverri-Toro, Nov 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:41 EST 2020. Contains 331066 sequences. (Running on oeis4.)