Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:44:46
%S 0,5,21,48,86,135,195,266,348,441,545,660,786,923,1071,1230,1400,1581,
%T 1773,1976,2190,2415,2651,2898,3156,3425,3705,3996,4298,4611,4935,
%U 5270,5616,5973,6341,6720,7110,7511,7923,8346,8780,9225,9681,10148,10626,11115
%N a(n) = n*(11*n - 1)/2.
%C Number of sets with two elements that can be obtained by selecting distinct elements from two sets with 2n and 3n elements respectively and n common elements. - Polina S. Dolmatova (polinasport(AT)mail.ru), Jul 11 2003
%H G. C. Greubel, <a href="/A022268/b022268.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: x*(5 + 6*x)/(1-x)^3. - _Bruno Berselli_, Feb 11 2011
%F a(n) = 11*n + a(n-1) - 6 for n>0. - _Vincenzo Librandi_, Aug 04 2010
%F a(n) = A000217(6*n-1) - A000217(5*n-1). - _Bruno Berselli_, Oct 17 2016
%F From _Wesley Ivan Hurt_, Dec 04 2016: (Start)
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
%F a(n) = (1/9) * Sum_{i=n..10n-1} i. (End)
%F E.g.f.: (1/2)*(11*x^2 + 10*x)*exp(x). - _G. C. Greubel_, Jul 17 2017
%p A022268:=n->n*(11*n - 1)/2: seq(A022268(n), n=0..50); # _Wesley Ivan Hurt_, Dec 04 2016
%t Table[n (11 n - 1)/2, {n, 0, 40}] (* _Bruno Berselli_, Oct 14 2016 *)
%o (PARI) a(n)=n*(11*n-1)/2 \\ _Charles R Greathouse IV_, Sep 24 2015
%o (Magma) [n*(11*n - 1)/2 : n in [0..50]]; // _Wesley Ivan Hurt_, Dec 04 2016
%Y Cf. A000217, A022281.
%Y Cf. index to sequence with numbers of the form n*(d*n+10-d)/2 in A140090.
%Y Cf. similar sequences listed in A022288.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_