login
A283750
a(n) = n^2 XOR (n + 1)^2.
1
1, 5, 13, 25, 9, 61, 21, 113, 17, 53, 29, 233, 57, 109, 37, 481, 33, 101, 45, 249, 41, 93, 1013, 81, 49, 213, 125, 457, 89, 205, 69, 1985, 65, 197, 77, 473, 73, 253, 85, 945, 209, 117, 477, 169, 121, 4013, 229, 417, 97, 165, 1005, 185, 105, 413, 181, 1937, 241, 405, 189, 905, 153, 397, 133, 8065, 129, 389, 141, 921
OFFSET
0,2
COMMENTS
XOR the binary representations of n^2 and (n + 1)^2.
LINKS
Eric Weisstein's World of Mathematics, XOR
FORMULA
a(n) = A000290(n) XOR A000290(n+1).
MATHEMATICA
Table[BitXor[n^2, (n + 1)^2], {n, 0, 67}]
PROG
(PARI) for(n=0, 67, print1(bitxor(n^2, (n + 1)^2), ", ")) \\ Indranil Ghosh, Mar 15 2017
(Python) def A283750(n): return (n**2)^(n + 1)**2 # Indranil Ghosh, Mar 15 2017
CROSSREFS
Sequence in context: A140090 A271937 A121511 * A156679 A344813 A190618
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 15 2017
STATUS
approved