|
|
A283747
|
|
a(n) = least m such that 1/2^(n+1) < f(m) < 1/2^n, where f(m) = fractional part of m*(golden ratio).
|
|
1
|
|
|
1, 4, 2, 5, 13, 68, 34, 89, 466, 233, 610, 1597, 8362, 4181, 10946, 28657, 150050, 75025, 196418, 1028458, 514229, 1346269, 3524578, 18454930, 9227465, 24157817, 126491972, 63245986, 165580141, 433494437, 2269806340, 1134903170, 2971215073, 15557484098
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is column 1 of A283740; |a(n+1) - a(n)| is a Fibonacci number for n >= 1.
|
|
LINKS
|
|
|
MATHEMATICA
|
g = GoldenRatio; z = 50000; t = Table[N[FractionalPart[n*g]], {n, 1, z}];
r[k_] := Select[Range[z], 1/2^(k + 1) < t[[#]] < 1/2^k &, 1];
Flatten[Table[r[k], {k, 0, 200}]] (* A283747 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|