login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340564
Primes p such that the sum of (p mod q) for primes q < p is prime.
1
5, 13, 23, 113, 137, 151, 163, 251, 317, 461, 479, 487, 521, 661, 691, 719, 887, 907, 991, 1129, 1213, 1453, 1901, 1949, 1987, 2053, 2141, 2243, 2333, 2399, 2549, 2797, 3041, 3049, 3119, 3221, 3433, 3457, 3527, 3529, 3691, 3697, 3911, 4013, 4241, 4649, 4817, 5099, 5407, 5413, 5689, 5693, 6217
OFFSET
1,1
COMMENTS
a(n) = prime(m) if A033955(m) is prime.
LINKS
EXAMPLE
a(3) = 23 is a term because (23 mod 2) + ... + (23 mod 19) = 1+2+3+2+1+10+6+4 = 29 is prime.
MAPLE
f:= proc(n) local i, p;
p:= ithprime(n);
add(p mod ithprime(i), i=1..n-1)
end proc:
map(ithprime, select(t -> isprime(f(t)), [$1..2000]));
PROG
(PARI) isok(p) = if (isprime(p), my(s=0); forprime(q=2, precprime(p-1), s += p % q); isprime(s); ); \\ Michel Marcus, Jan 11 2021
CROSSREFS
Cf. A033955.
Sequence in context: A075829 A119248 A114998 * A140090 A271937 A121511
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 11 2021
STATUS
approved