login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340563
a(n) = sqrt( Product_{1<=j, k<=n-1} (4*sin(j*Pi/n)^2 + 4*cos(k*Pi/n)^2) ).
1
1, 1, 2, 16, 384, 30976, 7741440, 6369316864, 16435095011328, 138915523039657984, 3696387867279360000000, 321533678904455375050768384, 88192375153215003517412966400000, 78996127242669742603293261855977373696, 223311937686075869460797609709638544686841856
OFFSET
0,3
FORMULA
a(n) ~ c * (sqrt(2) - 1)^n * exp(2*G*n^2/Pi), where c = sqrt(Pi) / Gamma(3/4)^2 if n is even and c = 2^(1/4) if n is odd, G is Catalan's constant A006752. - Vaclav Kotesovec, Mar 18 2023
MATHEMATICA
Table[Sqrt[Product[Product[(4*Sin[j*Pi/n]^2 + 4*Cos[k*Pi/n]^2), {j, 1, n - 1}], {k, 1, n - 1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
PROG
(PARI) default(realprecision, 120);
{a(n) = round(sqrt(prod(j=1, n-1, prod(k=1, n-1, 4*sin(j*Pi/n)^2+4*cos(k*Pi/n)^2))))}
CROSSREFS
Main diagonal of A340561.
Sequence in context: A002474 A375059 A172149 * A295710 A012390 A009613
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 11 2021
STATUS
approved