OFFSET
0,2
FORMULA
a(n) = sum(m=0..n, 1/(2*m+1)!*sum(j=4*m+2..2*n, binomial(j-1,4*m+1)*j!*2^(2*n-j)*(-1)^(n+1+j)*stirling2(2*n,j))). - Vladimir Kruchinin, Jun 11 2011
EXAMPLE
sinh(tan(x)*tan(x)) = 2/2!*x^2 + 16/4!*x^4 + 392/6!*x^6 + 21376/8!*x^8 + ...
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Sinh[Tan[x]^2], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jun 12 2016 *)
PROG
(Maxima)
a(n):=sum(1/(2*m+1)!*sum(binomial(j-1, 4*m+1)*j!*2^(2*n-j)*(-1)^(n+1+j)*stirling2(2*n, j), j, 4*m+2, 2*n), m, 0, n); /* Vladimir Kruchinin, Jun 11 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved