The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002474 Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x). 14
 2, 16, 384, 18432, 1474560, 176947200, 29727129600, 6658877030400, 1917756584755200, 690392370511872000, 303772643025223680000, 160391955517318103040000, 100084580242806496296960000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The corresponding numerators are A033999(n) = (-1)^n. REFERENCES Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7 LINKS T. D. Noe, Table of n, a(n) for n = 0..50 Index to divisibility sequences Index entries for sequences related to Bessel functions or polynomials FORMULA a(n) = 2^(2n+k) * n! * (n+k)! here for k=1, i.e., Bessel's J1(x) has the denominator a(n) for the coefficient of x^(2*n+1), n >= 0. a(n) = 2^(2n+1)*A010790(n). EXAMPLE a(3) = 18432 = 128*6*24, J1(x) = x/2 - x^3/16 + x^5/384 - x^7/18432 +- ... MATHEMATICA Series[ BesselJ[ 1, x ], {x, 0, 30} ] PROG (PARI) a(n) = n!^2 * (n+1) << (2*n+1) \\ Charles R Greathouse IV, Oct 23 2023 (PARI) first(n)=my(x='x+O('x^(2*n+1)), t=besselj(1, x)); vector(n+1, k, 2*denominator(polcoeff(t, 2*k-2))) \\ Charles R Greathouse IV, Oct 23 2023 CROSSREFS Cf. J_0: A002454, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441. Cf. A010790, A033999. Sequence in context: A140308 A280723 A052737 * A172149 A340563 A295710 Adjacent sequences: A002471 A002472 A002473 * A002475 A002476 A002477 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS Name specified, numerators given, formula augmented by Wolfdieter Lang, Aug 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 08:19 EST 2023. Contains 367557 sequences. (Running on oeis4.)