login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002474 Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x). 14
2, 16, 384, 18432, 1474560, 176947200, 29727129600, 6658877030400, 1917756584755200, 690392370511872000, 303772643025223680000, 160391955517318103040000, 100084580242806496296960000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The corresponding numerators are A033999(n) = (-1)^n.
REFERENCES
Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7
LINKS
FORMULA
a(n) = 2^(2n+k) * n! * (n+k)! here for k=1, i.e., Bessel's J1(x) has the denominator a(n) for the coefficient of x^(2*n+1), n >= 0.
a(n) = 2^(2n+1)*A010790(n).
EXAMPLE
a(3) = 18432 = 128*6*24, J1(x) = x/2 - x^3/16 + x^5/384 - x^7/18432 +- ...
MATHEMATICA
Series[ BesselJ[ 1, x ], {x, 0, 30} ]
PROG
(PARI) a(n) = n!^2 * (n+1) << (2*n+1) \\ Charles R Greathouse IV, Oct 23 2023
(PARI) first(n)=my(x='x+O('x^(2*n+1)), t=besselj(1, x)); vector(n+1, k, 2*denominator(polcoeff(t, 2*k-2))) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Cf. J_0: A002454, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441.
Sequence in context: A140308 A280723 A052737 * A172149 A340563 A295710
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name specified, numerators given, formula augmented by Wolfdieter Lang, Aug 25 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 08:19 EST 2023. Contains 367557 sequences. (Running on oeis4.)