login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052737
a(n) = ((2*n)!/n!)*2^(2*n+1).
0
0, 2, 16, 384, 15360, 860160, 61931520, 5449973760, 566797271040, 68015672524800, 9250131463372800, 1406019982432665600, 236211357048687820800, 43462889696958559027200, 8692577939391711805440000, 1877596834908609749975040000, 435602465698797461994209280000
OFFSET
0,2
COMMENTS
A simple context-free grammar in a labeled universe.
FORMULA
E.g.f.: 1/4 - (1/4)*sqrt(1-16*x).
D-finite Recurrence: {a(1)=2, (8-16*n)*a(n) + a(n+1)=0}.
a(n) = (1/8)*16^(n+1)*Gamma(n+1/2)/Pi^(1/2).
a(n) = n! * A052707(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(Pi)*exp(1/16)*erf(1/4)/8, where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi)*exp(-1/16)*erfi(1/4)/8, where erfi is the imaginary error function. (End)
MAPLE
spec := [S, {B=Union(Z, C), S=Union(B, Z, C), C=Prod(S, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
[seq((2*n)!/n!*2^(2*n+1), n=0..12)]; # Zerinvary Lajos, Sep 28 2006
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/4-Sqrt[1-16x]/4, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 12 2015 *)
CROSSREFS
Cf. A052707.
Sequence in context: A325287 A140308 A280723 * A002474 A375059 A172149
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Better definition from Zerinvary Lajos, Sep 28 2006
More terms from Harvey P. Dale, Aug 12 2015
STATUS
approved