login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052737 a(n) = ((2*n)!/n!)*2^(2*n+1). 0
0, 2, 16, 384, 15360, 860160, 61931520, 5449973760, 566797271040, 68015672524800, 9250131463372800, 1406019982432665600, 236211357048687820800, 43462889696958559027200, 8692577939391711805440000, 1877596834908609749975040000, 435602465698797461994209280000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A simple context-free grammar in a labeled universe.
LINKS
FORMULA
E.g.f.: 1/4 - (1/4)*sqrt(1-16*x).
D-finite Recurrence: {a(1)=2, (8-16*n)*a(n) + a(n+1)=0}.
a(n) = (1/8)*16^(n+1)*Gamma(n+1/2)/Pi^(1/2).
a(n) = n! * A052707(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(Pi)*exp(1/16)*erf(1/4)/8, where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi)*exp(-1/16)*erfi(1/4)/8, where erfi is the imaginary error function. (End)
MAPLE
spec := [S, {B=Union(Z, C), S=Union(B, Z, C), C=Prod(S, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
[seq((2*n)!/n!*2^(2*n+1), n=0..12)]; # Zerinvary Lajos, Sep 28 2006
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/4-Sqrt[1-16x]/4, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 12 2015 *)
CROSSREFS
Cf. A052707.
Sequence in context: A325287 A140308 A280723 * A002474 A172149 A340563
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Better definition from Zerinvary Lajos, Sep 28 2006
More terms from Harvey P. Dale, Aug 12 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 21:37 EST 2023. Contains 367662 sequences. (Running on oeis4.)