The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052737 a(n) = ((2*n)!/n!)*2^(2*n+1). 0
 0, 2, 16, 384, 15360, 860160, 61931520, 5449973760, 566797271040, 68015672524800, 9250131463372800, 1406019982432665600, 236211357048687820800, 43462889696958559027200, 8692577939391711805440000, 1877596834908609749975040000, 435602465698797461994209280000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A simple context-free grammar in a labeled universe. LINKS Table of n, a(n) for n=0..16. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 693. FORMULA E.g.f.: 1/4 - (1/4)*sqrt(1-16*x). D-finite Recurrence: {a(1)=2, (8-16*n)*a(n) + a(n+1)=0}. a(n) = (1/8)*16^(n+1)*Gamma(n+1/2)/Pi^(1/2). a(n) = n! * A052707(n). - R. J. Mathar, Aug 21 2014 From Amiram Eldar, Mar 22 2022: (Start) Sum_{n>=1} 1/a(n) = sqrt(Pi)*exp(1/16)*erf(1/4)/8, where erf is the error function. Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi)*exp(-1/16)*erfi(1/4)/8, where erfi is the imaginary error function. (End) MAPLE spec := [S, {B=Union(Z, C), S=Union(B, Z, C), C=Prod(S, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); [seq((2*n)!/n!*2^(2*n+1), n=0..12)]; # Zerinvary Lajos, Sep 28 2006 MATHEMATICA With[{nn=20}, CoefficientList[Series[1/4-Sqrt[1-16x]/4, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 12 2015 *) CROSSREFS Cf. A052707. Sequence in context: A325287 A140308 A280723 * A002474 A172149 A340563 Adjacent sequences: A052734 A052735 A052736 * A052738 A052739 A052740 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS Better definition from Zerinvary Lajos, Sep 28 2006 More terms from Harvey P. Dale, Aug 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 21:37 EST 2023. Contains 367662 sequences. (Running on oeis4.)