login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052736
E.g.f. [1 -3x -sqrt(1-6x+x^2) -x*(1-x-sqrt(1-6x+x^2)) ]/2.
0
0, 0, 2, 24, 384, 8160, 218880, 7116480, 272240640, 11985200640, 596981145600, 33195609216000, 2038500521164800, 137021183973273600, 10006412139653529600, 788930789450259456000, 66790064645111808000000, 6042970648669883056128000, 581917311773908793819136000, 59423732260666221275283456000
OFFSET
0,3
FORMULA
D-finite with recurrence: a(1)=0; a(2)=2; a(3)=24; (-n^3-n^2+4*n+4)*a(n) +(-6+7*n^2+11*n)*a(n+1) +(-7*n-10)*a(n+2) +a(n+3) =0.
a(n) ~ (2-sqrt(2))*sqrt(3*sqrt(2)-4)*n^(n-1)*(3+2*sqrt(2))^n/exp(n). - Vaclav Kotesovec, Oct 05 2013
Conjecture: a(n) = n!*A006319(n-1). - R. J. Mathar, Oct 16 2013
MAPLE
spec := [S, {B=Prod(Z, C), S=Prod(C, C), C=Union(B, S, Z)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); # end of program
0, seq(simplify( n!*(n-1)*hypergeom([n, 2-n], [3], -1) ), n=1..20); # Mark van Hoeij, May 29 2013
MATHEMATICA
CoefficientList[Series[1/2-3/2*x-1/2*(1-6*x+x^2)^(1/2)-(1/2-1/2*x-1/2*(1-6*x+x^2)^(1/2))*x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
PROG
(PARI) x='x+O('x^66); concat([0, 0], Vec( serlaplace( 1/2-3/2*x -1/2*(1-6*x+x^2)^(1/2) -(1/2-1/2*x-1/2*(1-6*x+x^2)^(1/2))*x))) \\ Joerg Arndt, May 29 2013
CROSSREFS
Sequence in context: A081685 A288944 A052670 * A103904 A219431 A214688
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved