login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052707
Odd powers of 2 multiplied by Catalan numbers.
3
0, 2, 8, 64, 640, 7168, 86016, 1081344, 14057472, 187432960, 2549088256, 35223764992, 493132709888, 6979724509184, 99710350131200, 1435829041889280, 20819521107394560, 303720072625520640, 4454561065174302720
OFFSET
0,2
COMMENTS
And/Or trees with 1 variable [Chauvin et al.]. - R. J. Mathar, Apr 01 2012
LINKS
B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger, And/Or Tree Revisited, Combinatorics, Probability and Computing, Vol. 13, No. 4-5 (2004), pp. 475-497.
FORMULA
a(n) = 2^(2*n-1)*A000108(n-1), for n > 0.
Recurrence: a(1)=2, (n+1)*a(n+1) = 8*(2*n-1)*a(n).
a(n) = 16^n*(Gamma(n-1/2)/(8*Gamma(n+1)*Pi^(1/2))), n>0.
Given g.f. A(x), then B(x)=A(x)-x series reversion is -B(-x). - Michael Somos, Sep 08 2005
Given g.f. A(x), then B(x)=A(x)-x satisfies B(x)=x+8*C(16*x*B(x)) where C(x) is g.f. for Catalan number A000108.
G.f. A(x) = 2*x*C(4*x) where C(x) is g.f. for Catalan number A000108.
G.f.: (1-sqrt(1-16*x))/4 = 4*x/(1+sqrt(1-16*x)).
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=1} 1/a(n) = (4/75)*(11 + 16*arcsin(1/4)/sqrt(15)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (4/4913)*(527 - 48*sqrt(17)*arcsinh(1/4)). (End)
MAPLE
spec := [S, {C=Union(B, Z), B=Prod(S, S), S=Union(B, C, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# 2nd program
A052707 := proc(n)
if n =0 then
0;
else
2^(2*n-1)*A000108(n-1) ;
fi ;
end proc:
seq(A052707(n), n=0..10) ; # R. J. Mathar, Apr 26 2017
MATHEMATICA
InverseSeries[Series[y/2-y^2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 13 2000 *)
Table[2^(2*n-1)*CatalanNumber[n-1] +Boole[n==0]/2, {n, 0, 30}] (* G. C. Greubel, May 30 2022 *)
PROG
(PARI) a(n)=if(n<1, 0, n--; 2*4^n*binomial(2*n, n)/(n+1))
(SageMath) [2^(2*n-1)*catalan_number(n-1) + bool(n==0)/4 for n in (0..30)] # G. C. Greubel, May 30 2022
CROSSREFS
Cf. A000108.
Sequence in context: A353821 A354237 A191570 * A059862 A268666 A193549
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved