OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * 2^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * (-2)^(k-1) * a(n-k).
a(n) ~ n! * (-1)^(n+1) * 2^(n+1) / (n * log(n)^2) * (1 - (4 + 2*gamma)/log(n) + (12 + 12*gamma + 3*gamma^2 - Pi^2/2)/log(n)^2 + (2*Pi^2*gamma - 32 + 4*Pi^2 - 24*gamma^2 - 8*zeta(3) - 4*gamma^3 - 48*gamma)/log(n)^3 + (80 - 20*Pi^2*gamma + 40*zeta(3)*gamma - 5*Pi^2*gamma^2 + 160*gamma + 5*gamma^4 + 80*zeta(3) + 40*gamma^3 + Pi^4/12 - 20*Pi^2 + 120*gamma^2)/log(n)^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 06 2022
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(1 - Log[1 + 2 x]/2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! 2^(n - k), {k, 0, n}], {n, 0, 20}]
PROG
(PARI) my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+2*x)/2))) \\ Michel Marcus, Jun 06 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 06 2022
STATUS
approved