login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354750
Expansion of e.g.f. 1 / (1 - log(1 + 3*x) / 3).
3
1, 1, -1, 6, -48, 534, -7542, 129240, -2603736, 60292512, -1577546928, 46021512096, -1480976147664, 52110720451152, -1990258155061776, 81995762243700864, -3624527727510038784, 171109526616468957312, -8591991935936929932672, 457246520477143117555968
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * 3^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * (-3)^(k-1) * a(n-k).
MATHEMATICA
nmax = 19; CoefficientList[Series[1/(1 - Log[1 + 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! 3^(n - k), {k, 0, n}], {n, 0, 19}]
PROG
(PARI) my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+3*x)/3))) \\ Michel Marcus, Jun 06 2022
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 06 2022
STATUS
approved