login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335531
Expansion of e.g.f. 1/(1-3*log(1+x)).
9
1, 3, 15, 114, 1152, 14562, 220842, 3907656, 79019496, 1797660000, 45439902288, 1263456328032, 38324061498672, 1259345712721392, 44565940575178992, 1689757622095909248, 68339921117338411776, 2936658673480397537664, 133615257668682429428352, 6417113656859478628233984, 324414161427519766056847104
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} 3^k * k! * Stirling1(n,k).
a(n) ~ n! * exp(1/3) / (3*(exp(1/3)-1)^(n+1)). - Vaclav Kotesovec, Jun 12 2020
a(0) = 1; a(n) = 3 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, May 22 2022
MATHEMATICA
a[n_] := Sum[k! * 3^k * StirlingS1[n, k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Jun 12 2020 *)
With[{nn=20}, CoefficientList[Series[1/(1-3Log[1+x]), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Oct 02 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, 3^k*k!*stirling(n, k, 1));
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-3*log(1+x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
CROSSREFS
Column k=3 of A320080.
Cf. A335530.
Sequence in context: A059849 A123853 A357794 * A166885 A346224 A082163
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 12 2020
STATUS
approved