login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335534
a(n) = tribonacci(n) modulo Fibonacci(n).
1
0, 0, 1, 2, 4, 7, 0, 3, 10, 26, 60, 130, 38, 173, 485, 175, 977, 273, 2789, 2065, 336, 15149, 22718, 39800, 5226, 54214, 2323, 251416, 418400, 93831, 977776, 1518664, 261912, 5208104, 2557037, 3549042, 21177270, 11203146, 36247269, 87596844, 44950918, 261069681
OFFSET
1,4
COMMENTS
a(n) is congruent to tribonacci(n) modulo k if Fibonacci(n) is divisible by k, although the converse does not hold.
LINKS
EXAMPLE
For n=10, since tribonacci(10)=81 and Fibonacci(10)=55, a(10)=81 modulo 55 = 26.
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3] mod (<<0|1>, <1|1>>^n)[1, 2]:
seq(a(n), n=1..45); # Alois P. Heinz, Aug 19 2020
MATHEMATICA
m = 42; Mod[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, m], Array[Fibonacci, m]] (* Amiram Eldar, Aug 19 2020 *)
PROG
(PARI) t(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
a(n) = t(n) % fibonacci(n); \\ Michel Marcus, Aug 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Richard Peterson, Jun 12 2020
STATUS
approved