Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jul 21 2021 09:33:19
%S 0,0,1,2,4,7,0,3,10,26,60,130,38,173,485,175,977,273,2789,2065,336,
%T 15149,22718,39800,5226,54214,2323,251416,418400,93831,977776,1518664,
%U 261912,5208104,2557037,3549042,21177270,11203146,36247269,87596844,44950918,261069681
%N a(n) = tribonacci(n) modulo Fibonacci(n).
%C a(n) is congruent to tribonacci(n) modulo k if Fibonacci(n) is divisible by k, although the converse does not hold.
%H Alois P. Heinz, <a href="/A335534/b335534.txt">Table of n, a(n) for n = 1..2000</a>
%e For n=10, since tribonacci(10)=81 and Fibonacci(10)=55, a(10)=81 modulo 55 = 26.
%p a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3] mod (<<0|1>, <1|1>>^n)[1, 2]:
%p seq(a(n), n=1..45); # _Alois P. Heinz_, Aug 19 2020
%t m = 42; Mod[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, m], Array[Fibonacci, m]] (* _Amiram Eldar_, Aug 19 2020 *)
%o (PARI) t(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
%o a(n) = t(n) % fibonacci(n); \\ _Michel Marcus_, Aug 19 2020
%Y Cf. A000073, A000045, A001177, A133021, A046738.
%K nonn
%O 1,4
%A _Richard Peterson_, Jun 12 2020