OFFSET
0,3
FORMULA
a(0)=1 and a(n) = Sum_{k=0..n} k! * 3^(k-1) * Stirling1(n,k) for n > 0.
a(n) ~ n! * exp(1/3) / (9*(exp(1/3)-1)^(n+1)). - Vaclav Kotesovec, Jun 12 2020
MATHEMATICA
a[0] = 1; a[n_] := Sum[k! * 3^(k - 1) * StirlingS1[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jun 12 2020 *)
With[{nn=20}, CoefficientList[Series[(1-2Log[1+x])/(1-3Log[1+x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 12 2021 *)
PROG
(PARI) {a(n) = if(n==0, 1, sum(k=0, n, k!*3^(k-1)*stirling(n, k, 1)))}
(PARI) N=40; x='x+O('x^N); Vec(serlaplace((1-2*log(1+x))/(1-3*log(1+x))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 12 2020
STATUS
approved