login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335530
Expansion of e.g.f. (1 - 2*log(1 + x))/(1 - 3*log(1 + x)).
2
1, 1, 5, 38, 384, 4854, 73614, 1302552, 26339832, 599220000, 15146634096, 421152109344, 12774687166224, 419781904240464, 14855313525059664, 563252540698636416, 22779973705779470592, 978886224493465845888, 44538419222894143142784
OFFSET
0,3
FORMULA
a(0)=1 and a(n) = Sum_{k=0..n} k! * 3^(k-1) * Stirling1(n,k) for n > 0.
a(n) ~ n! * exp(1/3) / (9*(exp(1/3)-1)^(n+1)). - Vaclav Kotesovec, Jun 12 2020
MATHEMATICA
a[0] = 1; a[n_] := Sum[k! * 3^(k - 1) * StirlingS1[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jun 12 2020 *)
With[{nn=20}, CoefficientList[Series[(1-2Log[1+x])/(1-3Log[1+x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 12 2021 *)
PROG
(PARI) {a(n) = if(n==0, 1, sum(k=0, n, k!*3^(k-1)*stirling(n, k, 1)))}
(PARI) N=40; x='x+O('x^N); Vec(serlaplace((1-2*log(1+x))/(1-3*log(1+x))))
CROSSREFS
Column k=3 of A334369.
Sequence in context: A355380 A213639 A243690 * A308877 A322908 A098937
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 12 2020
STATUS
approved