login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1/(1-3*log(1+x)).
9

%I #28 May 22 2022 09:50:16

%S 1,3,15,114,1152,14562,220842,3907656,79019496,1797660000,45439902288,

%T 1263456328032,38324061498672,1259345712721392,44565940575178992,

%U 1689757622095909248,68339921117338411776,2936658673480397537664,133615257668682429428352,6417113656859478628233984,324414161427519766056847104

%N Expansion of e.g.f. 1/(1-3*log(1+x)).

%H Seiichi Manyama, <a href="/A335531/b335531.txt">Table of n, a(n) for n = 0..390</a>

%F a(n) = Sum_{k=0..n} 3^k * k! * Stirling1(n,k).

%F a(n) ~ n! * exp(1/3) / (3*(exp(1/3)-1)^(n+1)). - _Vaclav Kotesovec_, Jun 12 2020

%F a(0) = 1; a(n) = 3 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, May 22 2022

%t a[n_] := Sum[k! * 3^k * StirlingS1[n, k], {k, 0, n}]; Array[a, 21, 0] (* _Amiram Eldar_, Jun 12 2020 *)

%t With[{nn=20},CoefficientList[Series[1/(1-3Log[1+x]),{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Oct 02 2021 *)

%o (PARI) a(n) = sum(k=0, n, 3^k*k!*stirling(n, k, 1));

%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-3*log(1+x))))

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ _Seiichi Manyama_, May 22 2022

%Y Column k=3 of A320080.

%Y Cf. A335530.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jun 12 2020